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Abstract 

This report presents a mathematical theory for use in the design of phase- 
coherent tracking systems for deep-space applications. The theory is sufficiently 
general to include the design of both one-way and two-way systems. Because 
phase-locked loops, which comprise the heart of such systems, are nonlinear 
devices, this working theory is based on the nonlinear phase-locked-loop theory. 
From the working theory and certain aspects of the nonlinear theory, an approxi- 
mate model that takes into consideration the nonlinear effects associated with 
phase-locked loops has been developed. This approximate model is predicated 
and justified on the basis of measurements in the laboratory, and, for all prac- 
tical purposes, appears to fall within the region that constitutes a check between 
theory and practice. The model also accommodates the use of band-pass limiters 
in the system. 
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Chapter 1 
Space-Communication Network Concepts 

1. Introduction 

Before any attempt to assemble words, formulas, 
notation, and design figures that aid the communications 
engineer in designing a practical communication system 
for deep-space applications, the portion of the overall 
communication network involved in the theory must be 
defined. 

The relative success of a deep-space mission depends 
upon the ability to collect useful scientific and engineer- 
ing data during all of its phases. This flow of data re- 
quires a very precise communication network such as 

the Deep Space Network (DSN), which is designed to 
communicate with, and permit control of, spacecraft 
(SC) designed for deep-space exploration. The main 
elements of the DSN are the Deep Space Instrumenta- 
tion Facility (DSIF), composed of space communication 
and tracking stations around the world; the Space Flight 
Operations Facility (SFOF), which is the command and 
control center located at JPL in Pasadena, California; 
and the Ground Communication System (GCS), which 
connects all parts of the DSN by voice, teletype lines, 
and high-speed data lines. These elements of the DSN 
are illustrated in simplsed form in Fig. 1-1. The flow of 
information in the DSN consists of several data types, 

INFORMATION c COMMANDS DIRECTION AND 

SC: DATA GATHERING AND DSIF: SPACECRAFT 
INFORMATION ACCUMU LATlON SIFISC COMMAND AND INFORMATION 

ACCUMULATION 

INFORMATION cl 
SFOF: ANALYSIS, COMMAND 

DSN/GCS PREPARATION AND ACTIVITY 
COORDINATION 

AND 
DIRECTION 

Fig. 1-1. Generic model of the Deep Space Network 
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including tracking data to and from the spacecraft, com- 
mands, telemetry, and administrative information. 

RECEIVER OUTPUTS 

Tracking data, giving the position and velocity of the 
spacecraft, is the result of data processing done at the 
DSIF Deep Space Stations. The flow of this data through 
the Network is a pattern of unsteady arrivals and re- 
transmissions at different points in time during any mission. 

TRANSMITTER INPUTS DOWNLINK 
CHANNEL 

Command data transmitted to the spacecraft is gen- 
erated usually at the SFOF; this data controls the space- 
craft. The flow of data is unsteady and conveyed to the 
spacecraft via a GCS/DSIF communication link. 

Telemetry data flows continuously from the space- 
craft; it is received and processed at the DSIF sites, 
and transmitted to the SFOF by means of the GCS. 
This information received at the SFOF pertains to the 
performance and condition of the spacecraft. 

Administrative data is stochastic flow because the 
time between separate arrivals of the data to the net- 
work and the demand placed on the particular channel 
by each of these arrivals are random quantities. This 
type of data includes voice channels, reporting condi- 
tions, and approvals. 

The exposition to follow is concerned with the design 
of the DSIF/SC communication link. The knowledge 
base of this exposition is contained in the bibliography 
at the end of this chapter; the reader should have a basic 
understanding of this material. Because the spacecraft 
and communication stations are not, for the purpose of 
this report, specific, the spacecraft will be referred to as 
the “vehicle system,” and the DSIF as the “reference 

system.” The vehicle-to-reference communication link 
may be further separated into two radio links, the “uphk,” 
which is used for transmission to the vehicle, and the 
“downlink,” which is used for transmission back to the 
reference system. Both the uplink and the downlink can 
be used for tracking purposes (i.e., determination of the 
vehicle orbit or trajectory). 

That portion of the vehicle-to-reference system com- 
munication link considered here is depicted in Fig. 1-2. 
The inputs to the reference-system transmitter consist 
of discrete and quantitative commands and tracking 
information; the outputs of the vehicle system consist of 
discrete and quantitative commands, noise, and tracking 
information. Inputs to the vehicle-system transmitter 
include spacecraft performance data, scientific data, and 
tracking information. The reference-system outputs 
are telemetry data (both spacecraft performance and 
scientific data), tracking data, and noise. 

The development of a theory for the design of the 
vehicle-to-reference communication link can be simpli- 
fied by concocting an analytical model of the system that 
is mathematically tractable. From this model, a tractable 
theory can be developed that includes the effects of such 
nonlinear system elements as the phase-locked loop 
(PLL) and the band-pass limiter (BPL). The approach 
taken to formalize the theory is illustrated in Fig. 1-3. 
Sere, and in the chapters that follow, exposition of the 
system theory will follow the four-part buildup shown 
in this figure. 

The first cut at any system design would, on the basis 
of the inputs (e.g., transmitter power and antenna gain), 
predicate the design on the basis of the linear PLL 

UPLINK 
CHANNEL INPUTS TRANSMITTER 

I 

OUTPUTS I I 

REFERENCE I CHANNEL I VEHICLE 
SYSTEM I I (SC) 

SYSTEM 
( D W  

2 

Fig. 1-2. DSIF-to-SC and SC-to-DSIF commynication links 
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1. SYSTEM THEORY 
b BASEDON LINEAR --L 

PLL THEORY 

Fig. 1-3. Buildup of a working theory for the design of deep-space communication systems 

4. SYSTEM THEORY 
BASED ON 
NONLINEAR PLL EVALUATION AND 
THEORY WHERE BPLS e TESTING OF FINAL 
PRECEDE THE DESIGN 
CARRIER-TRACKING 
LOOPS 

3. SYSTEM THEORY 
2. SYSTEM THEORY BASED O N  LINEAR 

BASED ON PLL THEORY WHERE - 
NONLINEAR PLL - BPLS PRECEDE THE 
THEORY CARRIER-TRACKING 

LOOPS 

theory. Because the PLL is inherently a nonlinear sys- 
tem, a check could be made using the nonlinear PLL 
theory to determine where such a system would actually 
operate in practice. In the third step of design, several 
practical constraints, the introduction, for example, of 
BPLs before the carrier-tracking PLL, must be con- 
sidered. Thus, the design could be re-established using 
part 3 of Fig. 1-3; to effect the final design, part 4 would 
be used. The final step, testing and evaluation of system 
performance, would be performed in the laboratory. The 
laboratory measurements could then be compared with 
those predicted by part 4 of the system theory. With 
design, testing, and evaluation completed, the system is 
ready for use in a deep-space mission. 

11. The Problem 

The design, testing, and evaluation of performance of 
the DSIF/SC communication system described above 
requires a measurement of system performance that, in 
accordance with communication theory, will provide 
“optimum” solutions to system design problems. 

The definition of “optimum” is determined by which 
of the three system functions (i.e., tracking, telemetry, or 
command) the communication engineer considers most 
important. In any deep-space mission, the level of im- 
portance of these functions changes with respect to the 
position of the spacecraft relative to the earth (Le., the 
time after launch), thus making any definition of “opti- 
mum” difficult to defend. Immediately after launch, for 
example, the tracking function assumes priority. Near 
midcourse maneuver, the ability to send commands to 
the vehicle and have them detected and executed cor- 
rectly is of prime importance. After the midcourse 
maneuver, tracking again becomes the most important 
function because the spacecraft trajectory must be 
redetermined with great accuracy. Telemetry is im- 
portant through all phases of a deep-space mission. At 

encounter, final descent, or terminal maneuver, all three 
communication system functions are equally important. 
The failure of any one of the functions may prove costly, 
or even catastrophic to the mission. 

Thus, the definition of “optimum” depends upon that 
part of the overall design treated. In tracking system 
design, optimum could mean selection of those system 
parameters that minimize the error in doppler measure- 
ments. In telemetry- or command-system design, opti- 
mum could mean the apportionment of the total trans- 
mitter power between the carrier and one or more side- 
bands to minimize the probability of error. A good, 
overall system design, therefore, requires a thorough 
understanding of all three functions. Tractable mathe- 
matical solutions sometimes require the freezing of cer- 
tain system variables or parameters (such as the ratio 
of the bandwidth of the spacecraft’s carrier-tracking 
loop to that of the ground receiver), and compromises 
made among others. The addition of such a practical 
constraint as preceding the carrier-tracking loops with 
BPLs greatly complicates the design problem, of course, 
but the need of BPLs in any practical system has long 
been recognized by design engineers. Thus, the selection 
of an optimum criterion depends to a large extent upon 
what is practical, and the current state of the communi- 
cation art (e.g., the level of development of such system 
components as low-noise amplifiers, masers, antennas, IF 
amplifiers, and modulators). For these reasons, and 
because the mathematical model for such a system is 
complicated, design of a practical communication sys- 
tem must proceed by treating each system function 
separately, while working toward the integration of all 
functions as a whole. 

This description of the approach used in manipulating 
the mathematical model defines the goals in the design 
of a deep-space communication system; theoretical de- 
velopment may now proceed. 
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Chapter 2 
The Second-Order Phase-Locked Loop 

Certain concepts pertinent to the behavior of phase- 
locked loops and necessary to the discussions that follow 
are presented in this section; however, a complete ex- 
position of the theory, design, and performance of PLLs 
is unnecessary. A thorough and lucid treatment of vari- 
ous aspects of the behavior of PLLs in the presence of 
noise is given in Refs. 2-1 through 2-6. 

1. Fundamental Operation 

Phase-locked loops are widely used in radio engineer- 
ing and automation, in synchronizing devices and for 
automatic frequency control. The theory of operation 
can be elucidated using the simplest functional block 
diagram, Fig. 2-1. The harmonic oscillations s(t )  = $ZF 
X sin (Wt + 6) of the signal generator, and ~ ( t )  = f2 cos 
X (mt + 6) of the voltage-controlled oscillator (VCO) out- 
put act on the multiplier to produce the voltage ~ ( t ) .  
This voltage, ~ ( t ) ,  depends upon the difference between 
the phase and frequency of the signals ;(t) and s(t) ,  and 
upon the additive noise n(t). The resulting signal e@), 
after filtering by the loop filter F(p),  changes the output 
frequency and phase of the VCO (synchronized genera- 
tor) to coincide, in the absence of noise, with the fre- 
quency and phase of the signal generator. Even in the 
absence of external noise, fluctuations due to the circuit 
elements occur in PLL operation. In the signal-to-noise 

SIGNAL 
GENERATOR 

Fig. 2-1. Simplest form of a PLL receiver 

ratio region of currently expected PLL operations, the 
effects of these internal fluctuations are small in com- 
parison with the effects produced by the additive noise 
n(t); hence, in what follows, any instabilities in the VCO 
(Refs. 2-1, 22,  and 2-3) are neglected. By a slight modi- 
fication of the PLL theory, the VCO instabilities may 
be included. 

11. Essentials From Linear PLL theory 

The received waveform y( t )  is defined by 

where 

n(t) = x,(t) cos (sot + 6) + x,(t) sin ( w O t  + 6) (22) 
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represents the additive noise process. Both x1 and xz are 
assumed to be statistically independent, stationary, white 
Gaussian noise processes of the single-sided spectral 
density No W/Hz. The reference signal r(t)  at the out- 
put of the VCO is presumed to be a sinusoid, the in- 
stantaneous frequency of which is related to the input 
control voltage e(t) through the relationship 

(2-3) 

and 

Note that the entire gain of the loop is grouped into the 
gain of the VCO. 

Thus the product of the input y(t) and r ( t )  may be 
shown to be related, in operational form, to the phase 
error +(t) by 

+(t) = e(t3 - ?(t) 

= 8(t) - KFo [-\/Tisin+ + n’(t)] (2-5) P 

where all double-frequency terms have been neglected 
because neither the loop filter F ( p )  nor the VCO will 
respond significantly to them. In Eq. (2-5), the constant 
K is the open-loop gain (p. 17 of Ref. 2-1) and p is the 
Heaviside operator. Further, under certain physically 
justifiable conditions (Refs. 2-1 and 2-4), it may be 
shown that nf (t), consisting of two terms, is white Gaus- 
sian phase noise with the same spectral density as that 
of the original additive process n(t). Thus, in a study of 
receiver structure from input to output, Eq. (2-5) pro- 
vides the pertinent quantities, and the PLL may be con- 
veniently represented by the block diagram of Fig. 2-2. 

If the loop is linearized (i.e., assume sin + - +), the 
closed-loop transfer function H ( p )  of the PLL may be 

Fig. 2-2. Exact equivalent receiver 

written by inspection from Fig. 2-2 as 

Therefore, the linearized closed-loop transfer function 
is specified once the loop filter is determined. In prac- 
tice, the loop filter that corresponds to the one generally 
employed for carrier-tracking purposes is given by 

Substituting Eq. (2-7) into Eq. (2-6), we have 

(2-7) 

In practice, the variance of the phase error is an impor- 
tant parameter. For the simple linear model, the variance 
of the phase error is given by 

where 

(2-10) 

is the loop bandwidth defined by the linear PLL theory. 

If we define 

then, from Eqs. (2-8) and (%lo), we have 

r + l  
W L S -  

%z 

when T T ~  >>rZ (the case of greatest 
Thus Eq. (2-8) becomes 

(2-12) 

interest in practice). 
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which is the form of greatest interest in the exposition 
that follows. 

111. Nonlinear PLL Theory 

In a coherent communication system, a main function 
of the PLL is tracking a radio-frequency carrier. This 
section, therefore, presents significant results from the 
nonlinear PLL theory that will be useful in the develop- 
ment of the theory of coherent telemetry, command, and 
tracking systems. 

The most promising analytical approach in developing 
an exact nonlinear PLL theory is based on the Fokker- 
Planck method (Refs. 2-2 through 2-6). This method 
leads to an expression for the probability distribution of 
the nonstationary phase error that, in the steady state, 
gives an unbounded variance. This behavior of the vari- 
ance is, of course, a result of the cycle-slipping phe- 
nomenon associated with PLLs. However, Viterbi (Ref. 
2-4) and Tikhonov (Refs. 2-2 and 2-3) were successful 
in applying this method to the analysis of the first-order 
loop by recognizing that the phase-error-density-reduced 
modulo 2R is stationary in the steady state and possesses 
a bounded variance. Extension of the Fokker-Planck 
method to the second-order PLL [i.e., a loop filter of the 
proportional-plus-integral control type, Eq. (2-7)] is given 
in Refs. 2-5 and 2-6. The theory developed there sug- 
gests the possibility of approximating the second-order- 
loop phase-error density by the more tractable results 
obtained from analysis of the first-order loop. Demon- 
strating the validity of using the expression for the first- 

order-loop phase-error density in describing the statistics 
of the phase error in a second-order loop is the intent of 
the discussion that follows. 

The signal-plus-noise model of specif;c interest may be 
briefly characterized: the input signal to the PLL is 
assumed to be an unmodulated sine wave of fixed phase 0, 
frequency w0, power P in watts, plus additive white 
Gaussian noise of single-sided spectral density No W/Hz 
as described in Eq. (2-1). 

A particular mechanization of the proportional-plus- 
integral control-loop filter is illustrated in Fig. 2-3; the 
transfer function of this filter is given by Eq. (2-7). If we 
equate the two time constants r1 and r2, the probability 
distribution of the phase error is given by 

A 
where +(t) A O(t )  - @). This distribution is the result 
obtained by Viterbi (Ref. 2-4) and Tikhonov (Refs. 2-2 and 
2-3) for the first-order loop. In particular, a l=4P/(KNo~~) 
is the signal-to-noise ratio in the bandwidth of the 
linearized first-order loop. We now define an equivalent 
parameter a as the signal-to-noise ratio in the bandwidth 
of the linearized second-order loop, i.e., 

2P UA- 
Now, 

where, as defined in Eq. (2-12), 

LOOP DESIGN PARAMETERS: WL = 12 Hz 
r = 2  

rl = 45.2 
r = 0.125 

AK = 5800 
2 

(2-15) 

8 

Fig. 2-3. loop filter mechanization 
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and H(s)  is the closed-loop transfer function of the 
linearized second-order loop. Replacing the parameter 
a, in Eq. (2-14) by a of Eq. (2-15), we have 

The validity of using Eq. (2-16) to represent the sta- 
tistical properties of the phase error in a second-order 
loop can be verified by comparing the equation graph- 
ically with an experimentally derived distribution. The 
closeness of the equation’s approximation to the statistical 
properties is clearly evident from Fig. 2-4 where the 
analytical distribution (solid curve) is superimposed over 
the experimental distribution (point plot) for various 
values of a in the range 6.5 dB > a > 0 dB. The cumu- 
lative distributions of the measured phase error are shown 
in Fig. 2-5 for the same values of a. As shown in this 

figure, the probability of the loop-losing lock is extremely 
small when a > 6.41 dB. It is also evident from the cumu- 
lative distributions that the phase-error density tends to 
become uniform for low signal-to-noise ratios. In Fig. 2-6, 
the variance of the phase error computed from the linear 
model and from Eq. (2-13) is compared with the variance 
of the measured phase error over the range of signal-to- 
noise ratio 0 < a < 6.5 dB. In subsequent chapters, these 
results will be used to characterize the nonlinear be- 
havior and performance of one-way and two-way phase- 
coherent communication systems. 

IV. Dynamics of Second-Order PLLs 
(Fokker-Planck Analysis) 

Recent results relative to the statistical dynamics of the 
phase-error process in second-order PLLs (Ref. 2-6) 
justify the conclusions presented in Section I11 of this 

0.80 

0.64 

0.48 

0.32 

0.16 

0 
- x  7r/2 0 x -H - x/2 0 x 

+, md +, md +, rad 

Fig. 2-4. Phase-error distributions for various values of a 
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0.1 

0 
-H - H/2 0 H/2 H 

Fig. 2-5. Cumulative distribution of the measured phase error 

chapter. The problem that led to these results concerns 
the actual phase-error process gt). 

The actual phase-error process 2t) in a PLL system 
undergoes diffusion much like a particle in Brownian 
motion; hence, the variance of the phase error becomes 
infinite in the steady state. Previous work (Refs. 2-2 and 
2-3) on determining the probability distribution of the 
phase error in the steady state of a first-order loop was 
accomplished by reducing the phase-error modulo 2T to 
a +(t) process. Because such a reduction ignores the 
number of cycles that have slipped with the passage of 
time, diffusion of the phase error takes place. For finding 
telemetry error probabilities, this reduction is all that is 
needed; for estimating tracking accuracy, however, the 
T(t) process itself must be studied. 

To completely describe the &) process, one must 
account for that component of the variance of the phase 
error that causes diffusion, i.e., cycle slipping. Cycle slip- 
ping is perhaps best described by evaluating the diffusion 
coefficient, i.e., the rate at which the variance of the 

N H 
N 

FIRST-ORDER 
LOOP MODEL 

4.0 

r- EXPERIMENTAL 
RESULT 

1.0 

0.1 I I I I I I I 
0 1 2 3 4 5 6 7 8 9 1 0  

SIGNAL-TO-NOISE RATIO a, dB 

Fig. 2-6. Experimental and analytical results relative 
to the variance of the phase error 

phase error is approaching iniinity, and combining this 
component of the variance in some way with the var- 
iance of the phase-error-reduced modulo %, 
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For a second-order loop, an approximate solution is 
given below for the steady-state distribution of the phase- 
error-reduced modulo 2 ~ ;  the regions of validity for this 
solution are established by comparing it to experimental 
results. In addition, approximate formulas are given for 
(1) the diffusion coefficient of the phase-error process, 
(2) the expected values of the time intervals between 
cycle-slipping events, (3) the expected number of cycles 
slipped per unit of time, (4) the expected number of 
cycles slipped “to the right” and “to the left,” (5)  the 
expected value of the phase-error rate in the steady state, 
and (6) the mean time to the first slip. In the limit as the 
system damping approaches infinity, the results of these 
formulas are valid for the first-order loop. 

A. loop Model and Phase-Error-Density-Reduced 
Modulo 27r 

For a PLL system with loop filter 

to the various system parameters through 

[ao - AK (1 - F,) (2-19) 

T + 1  1 - Fl 
= (7) P - 

where G = sin + - EEJ, the superbar denotes statistical 
average, a, represents the amount of loop detuning or 
frequency offset, p is the signal-to-noise ratio in the loop 
bandwidth, and W L  = (r + 1)/2r2 if r r1 >> r2. The param- 
eter r = AK r ; / r1  = d r 4  where t is the ‘loop damping,” 
and AK represents open loop gain. Moments of sin n~$ 
and cos (n+) are given by (Ref. 2-6) 

; cos (n+) = Re 

(2-17) 

it has been recently shown (Ref. 2-6) that the probability 
distribution of the phase-error-reduced modulo 2rr is 
given a good approximation by 

$+2T 

X exp(-px - acos x )  dx (2-18) 

where Iv(x) is the imaginary Bessel function of order v 
and argument x and + belongs to any interval of width 2~ 
centered about any lock point 2 n ~ ;  n is any integer. The 
parameters a and p that characterize Eq. (2-18) are related 

- 1 - cos2+ 
2 2 sin2 + = 1 + cos 2+ 

2 cos2 + = 

(2-20) 

with - -  
$ = sin2 + - (sin +)2 

Re [ * ] denotes the real part of the quantity in the 
brackets. It is clear from Eqs. (2-18) and (2-20) that p(+)  
will be symmetric when the loop is designed such that 
p = 0. 

The expected value of the phase-error can be found 
from Eq. (2-18) and the well known Bessel function ex- 
pansions of exp (tx cos +). Without going into details 
(see Ref. 2-6), we have 

It is clear from Eq. (2-21) that with P = 0, 5 = 0. Furthermore, 2 is given by (Ref. 2-6) 

(2-22) 
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The variance u; = 2 -(;)2 is minimized when the loop 
is designed such that p = 0 and a is maximized (Ref. 2-6). 
For this case we have, from Eqs. (2-21) and (2-22), 

Finally, the expected value of the phase-error rate (i, 
is given by (Ref. 2-6) 

- - 
4 = o0 - AK sin (p (2-24) 
- 

where sin 4 is given in Eq. (2-20) with n = 1. 

Figure 2-7 illustrates a plot of the variance of the phase- 
error a$-reduced modulo % for various values of r with 
p = 0. For purposes of checking the validity of the approxi- 
mation that leads to Eq. (218), we have plotted various 
values of variance of the phase-error obtained by direct 
measurement in the laboratory (Ref. 2-5). From Fig. 2-5 
it is clear that for most practical purposes Eq. (2-18) 
characterizes the distribution p(+) for all p > 3 dB when 

r = 2, p N 0. The larger the value of r, the better is the 
approximation. 

B. The Diffusion Coefficient 

One method of accounting for the fact that the loop 
actually skips cycles is to evaluate the rate at which the 
actual process at work in the loop undergoes diffusion. 
This parameter, the so-called diffusion coefficienk D 
(Ref. 2-6) is ( 2 ~ ) ~  times the total average number S of 
phase jumps (cycle slips) per unit of time and has been 
given by (Ref. 2-6) 

It will be shown later that the variance of the phase 
error T(t) at time t starting from zero error at time t = O is 

- v 742 + Dt (2-26) 

because the cross term E r 4 ~  (p(t)k(t)] is essentiany zero. 
This condition of the cross term follows from the fact that 
E [ + ( t ) ]  0 while g(t) is essentially independent of k(t) .  
Here k(t)  is the unique integer with T(t) = +(t) + %k(t). 

1 2 3 
LOOP SIGNAL-TO-NOISE RATIO p 

Fig. 2-7. Variance of the phase error vs loop signal-to-noise ratio p 
for various values of r, for p > 3 db, Q N p 
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Figure 2-8 illustrates a plot of the normalized diffusion 
coefficient for various values of p and r with p = 0. From 
this figure it is seen that diffusion will not appreciably 
effect the measurement in a finite time if p> 3. Equations 
(2-21) and (2-25) can be used, via Eq. (2-26), to account 
for the effects of errors in doppler measurements produced 
by cycle slipping. 

The expected time interval between successive phase 
jumps is approximated by (Ref. 2-6) 

where it has been assumed that f i  << 1. 

In the case where a0 f 0, the case of greatest practical 
interest, the average number of cycles slipped “to-the- 
right,” say I+, is of interest. Formulas for I, and I -  are 
given by (Ref. 2-6) 

where I is the (net) average number of phase jumps 
per unit time, i.e., 

Now I+ = I- for the unstressed loop with no = 0. 

The quantity I is related to +e total expected number of 
cycles slipped per unit time S through the equation 

C. Statistical Dynamics of the Phase-Error Process @I 

The actual loop phase error gt) is related to the reduced 
modulo % process +(t) through 

2t) = hrk + +(t) 

where 

LOOP SIGNAL-TO-NOISE RATlOp 

Fig. 2-8. The diffusion coefficient vs p for various values of r 
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is the largest integer that does not exceed the bracketed 
ratio. Thus, k is a discrete random variable that takes on 
integer values at random points in time. The mean squared 
value of the qt) process is given by 

+t) = a;(t) + (.%)%; + .% (& - k; )  (2-32) 

Denote by S the event that k phase jumps occur in t 
seconds. If we aspme that S is a Poisson-type process, 
then the quantity S, representing the total average number 
of phase jumps per unit time can be used to produce a 
probabilistic model for the phase-jumping process that 
causes diffusion of the phase error process T(t).  Namely, 

(Sty exp( St) P(S)& P ( k ) =  k t  

and the mean of k is 

(2-33) 

- -  
k = St (2-34) 

with - 
u; = St (2-35) 

Experimental justification that supports the Poisson as- 
sumption is given in Refs. 2-7, 2-8, and 2-9. Thus the 
mean-squared value of $(t) becomes 

u$(t) = u; (t) + (h)’ Ft + 2n (6 - E;) (2-36) 

and, in the steady state, T(t) has infinite variance. Now 
D = (5%)’ s represents the diffusion coefficient of the T(t) 
process, i.e., the rate at which J(t) is undergoing diffusion. 
Furthermore, if the random variables k and 4 are inde- 
pendent, as is reasonable, we can write 

Iim A u t =  u$(t + T )  - u$(t) 1 DT (2-37) 
t+m 

Finally, the probability of losing phase lock in t seconds, 
i.e., the probability of slipping one or more cycles, is 
given by 

This result can be used in the design of phase-coherent 
doppler tracking systems; this topic is discussed more 
fully in Chapter 5. 
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Chapter 3 
The Second-Order Phase-Locked Loop Preceded 

by a Band-Pass Limiter 

The theoretical results needed to explain the behavior 
of the carrier-tracking loop (PLL) when preceded by a 
BPL are discussed. The detailed theory and operation of 
the BPL is covered more completely in Refs. 3-1, 3-2, 
and 3-3. 

plus noise. If the spectral density of the noise at the 
limiter output is denoted by Se(s), and the bandwidth of 
the loop is assumed small in comparison with the band- 
width of the spectrum of the limiter output, one may 
derive a result similar to Eq. (2-Q), viz., 

1. The linear PlL Theory and the Effects of 
Band-Pass limiting 

In the practical operation of a coherent receiving sys- 
tem employing PLLs, the loop is preceded by a BPL 
because the loop bandwidth is a function of the signal 
power P, and any fluctuation in P (owing to a change in 
range, for instance) causes the loop bandwidth to fluc- 
tuate similarly. Band-pass limiters are used also to protect 
various loop components, the multiplier in particular, 
where signal and noise levels can vary over several orders 
of magnitude and exceed the dynamic range of these 
components. The mechanization of a BPL is illustrated 
in Fig. 3-1; the limiter incorporated in the PLL system 
is shown in Fig. 3-2. 

Again, the variance of the phase error is an important 
parameter in specifying the loop response to a sine wave 

(3-1) 

where a: is the power of the signal component of the 
limiter output and 1 - a: is the power associated with 
the noise process at the limiter output. The b i t e r  output 
spectrum has some noise bandwidth, say 

Fig. 3-1. Mechanization of a BPL 
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r(t) = VF- cm [ut+ $1 

Fig. 3-2. PLL receiver preceded by a BPt 

since the integral represents the total output noise power 
in the zone of interest, and the variable s is the Laplace 
transform operator. Thus, as a result, 

The parameter x is, of course, the signal-to-noise ratio 
existing in the bandwidth of the loop. Thus, Eq. (3-3) 
may be written as 

where pi is the output signal-to-noise ratio of the limiter. 
In practice, ae is usually referred to as the signal ampli- 
tude suppression factor, and is given by (Ref. 3-2) 

where wL is to be defined* The factor 
r = Wiyp/we pp is the limiter performance factor (p. 48 
of Ref. 3-1) that is well approximated in the region of 
practical interest by 

(3-9) 
a! = & ( T ) ~  exp (- $)[I, (;) + I, (?)I 1 + 0 . 3 4 5 ~ ~  

0.862 + 0.690ry r =  
(3-4) 

where Ik(z) is the modified Bessel function of argument z 
and order k and v n  = 2P/N,Wi is the signal-to-noise ratio 
input to the limiter. The parameter W i  is used to denote 
the bandwidth of the IF filter. In the region of interest 
in practice Eq. (3-4) is closely approximated by (Ref. 3-1) 

where 

0.7854 xy + 0.4768 x2y2 
1 + 1.024 xy + 0.4768 x2y2 

a 2  = 

- 0.7854 9 + 0.4768 7' 
1 + 1.024 + 0.4768 

- (3-5) 

where x and y are defined by Eq. (3-7). Finally, ai takes 
the place of P given in Chapter 2; therefore, preceding 
the loop by a BPL greatly complicates the analysis even 
in the linear case. However, it is convenient to build a 
working theory based upon simplifying assumptions, and 
to test the validity of this theory through experimentation 
in the laboratory. 

Thus, the transfer function for a PLL preceded by a 
BPL [from Eq. (2-8)] is 

(3-10) 1 3- 72P W P )  = 
1 + (n + &)P + (2) P2 

9 = XY (3-6) and the corresponding WL becomes 
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where Thus, the distribution of the phase error in a PLL pre- 
ceded by a limiter is approximated by 

(3-12) 
71 

Notice that WL is now a function of the limiter suppres- 
sion factor ai. 

II. The Nonlinear PLL Theory and the Effects 
of Band-Pass limiting 

As a rule, PLL paxameters are usually specified at what 
shall be referred to as the “design point.” The “design 
point” is frequently referred to as “loop threshold.” In the 
past, this point has been taken to imply that condition 
where1 

2Po = N O W L O  (3-13) 

and 

The subscript zero on P, WL, and r refers to the respec- 
tive values of these parameters at the “design point.” It 
is known (Ref. 3-1) that Po represents a signal power at 
which the linear PLL theory does not apply. 

What theory, then, may be used to predicate a par- 
ticular design, or to test the performance of a particular 
design? In the following discussion, an approximate 
model is presented together with experimental results 
that verify it. 

The distribution of the phase error for a second-order 
PLL is, for all practical purposes, characterized by the 
parameter a defined by Eq. (2-15). In the linear model, 
a is the reciprocal of the variance of the phase error. 
This suggests that the distribution of the phase error in 
a loop that is preceded by a limiter be characterized by 
the assumption that a is the reciprocal of the variance of 
the phase error as determined from the linear PLL theory 
when preceded by a limiter; Le., 

2P 
a =  NoWLr (3-14) 

‘Where limiters are present in the results that follow, Eq. (3-13) is 
assumed always true. This applies as well in all the figures that 
follow. It is also assumed that p - 0 and that a = p in Eq. (2-19). 

I 

(3-15) 

where I? is defined in Eq. (3-9). Because WL is a function 
of ai, this dependence must be determined before any 
attempt to use Eq. (3-15). 

At the “design point,” the loop bandwidth and signal 
suppression factor are denoted by WLo and aio, respec- 
tively. For values that differ from the “design-point” 
value, W L  and ai are used. Thus the transfer function of 
the loop becomes 

I H(s)  = 

(3-16) 

where 

(3-17) 

The parameter p will be referred to as the limiter sup- 
pression factor. Hence 

and the variance of the phase error becomes 

(3-19) 

where 

a = (+) 1 + To (3-20) 

1 + -  
P 
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and I?, r,, and p, are defined by Eqs. (3-9), (3-12), and (3-17). 
respectively. The functions Ik(x) in Eq. (3-19) are imag- 
inary Bessel functions. 

Figure 3-3 is a plot of Eq. (3-19) for various values of 
y. This figure plots the variance of the phase-error 2 vs 
the signal-to-noise ratio x existing in the “design-point’’ 
loop bandwidth as determined from the linear PLL 
theory. The variance is essentially independent of the 

the “design-point” loop bandwidth to the bandwidth of 
the filter (IF amplifier) preceding the BPL of Fig. 3-1. 
Figure 3-4 is plotted under the same conditions as 
Fig. 3-3, except that the nonlinear PLL theory is as- 
sumed. Comparison of Fig. 3-3 with Fig. 3-4 indicates 
the difference between the variances of phase error de- 
termined from the linear PLL theory and the nonlinear 
PLL theory where the loops are preceded by a BPL. 
Note that the variance of the phase error in both plots is 

parameter y; the parameter y = WLo/Wi is the ratio of relatively insensitive to y. 

2~ 

r = 2  0 

wLo 
y = y -  

10-2 I I I I I I  I I I I  

I00 2 4 6  IO’ 2 4 6  
X 

Fig. 3-3. Variance of the phase error CT$ vs the signal-to- 
noise ratio x; linear PLL theory i s  assumed with BPLs 
preceding the loop 
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Fig. 3-4. Variance of the phase error U$ vs the signal-to- 
noise ratio x; nonlinear PLL theory is  assumed with BPLs 
preceding the toop 

JPL TECHNICAL REPORT 32-986 



References 

3-1. Tausworthe, R. C., Theory and Practical Design of Phase-Locked Receiuers: 
Volume I .  Technical Report 32-819. Jet Propulsion Laboratory, Pasadena, 
Calif., Feb. 15,1966. 

3-2. Davenport, W. B., “Signal-to-Noise Ratios in Band-Pass Limiters,” Journal 
of Applied Physics, Vol. 24, No. 6, pp. 720-727, June 1953. 

3-3. Springett, J. C., “Signal-to-Noise and Signal-to-Noise Spectral-Density Ratios 
at the Output of a Filter-Limiter Combination,” in Supporting Research and 
Advanced Development, Space Programs Summary 37-36, Vol. IV, Dec. 
31, 1965. 

JPL TECHNICAL REPORT 32-986 21 



Chapter 4 
Radio-Frequency Phase Measurements in One-way and Two-way 

P hase-Cq heren t Communication Systems 

In a phase-coherent communication system for deep- 
space applications, the telemetry and command signals 
usually phase modulate the radio-frequency carrier with 
modulation indices sufficiently low to permit the spec- 
trum of the transmitted waveform to retain a portion of 
the total transmitter power at the carrier frequency. 
There are two reasons for this. First, the velocity of the 
vehicle must be measured. This is usually accomplished 
by measuring the apparent doppler shift at the reference 
system and thereby computing the velocity. This mea- 
surement will be discussed in detail in Chapter 5. Second, 
if the telemetry and command data are to be detected 
coherently, the measurement or estimation of the phase 
of the observed carrier in noise is essential. The prob- 
lem of phase measurement or phase estimation is the 
subject of this chapter. The theory developed in what 
follows either includes or excludes the effects of BPLs 
in both the vehicle and the reference systems as well as 
the effects on system design due to the nonlinear be- 
havior of PLLs. 

1. Basic System Model 

Figure 4-1 shows the simplest mechanization of the 
two-way phase-measuring system. The reference system 
emits, on the uplink, the waveform 

After transmission, the channel introduces an arbitrary 
and unknown phase shift e, in the transmitted waveform, 
and further disturbs p(t) with additive white Gaussian 
noise nl(t) of single-sided spectral density N,,  W/Hz. We 
observe in the vehicle the doppler-shifted, phase-shifted, 
noise-corrupted waveform 

q(t) = -sin (olt + 8,) + nl(t) (4-2) 

The additive noise process nl(t) may be represented by 

= ~ ( t )  COS (wit + el) + yl(t) sin (@,t + e,) (4-3) 

where xl(t) and yl(t) are statistically independent, sta- 
tionary white Gaussian noise processes of single-sided 
spectral density Nlo. The vehicle coherently tracks, by 
means of a narrow-band PLL, the carrier that produces 
the estimate 

z(t) = $!cos ( W l t  + $) (4-4) 
A where el is the PLL estimate of 0,. 

The source of the carrier for the downlink in a two-way 
phase-measuring system is derived from the vehicle’s 
carrier-tracking loop. Thus, on the downlink, we transmit 

v(t) = l/zKsin (allot + &) (4-5) 
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I REFERENCE RECEIVER VEHICLE TRANSPONDER 

Fig. 4-1, Simplest two-way phase-measuring system 

and observe, at the reference system, the doppler-shifted, 
phase-shifted, noise-corrupted waveform 

A t(t) = m, sin ( w z t  + 8, + e,) + n,(t) (4-6) 

where nz(t) is stationary white Gaussian noise of single- 
sided spectral density N,,  W/Hz, and ol0 = Go, [Eq. 
(4-5)], where G denotes the static phase gain of the vehicle 
transponder. A convenient representation for n,(t) is 
given by 

where xz(t) and yz(t) are statistically independent and 
white Gaussian noise processes of single-sided spectral 
density N,,  W/Hz. The reference receiver tracks the 
carrier component in t(t), which provides the receiver 
with the estimate 

(4-8) 
A ~ ( t )  = $COS (ozt + e,) 

A A The quantity & is the PLL estimate of e, + e,. 

In the design of such a system, there are at least two 
errors that are significant. These are: (1) the reference 

A A 
receiver’s two-way-tracking phase error +,., = e, + 8, - e,, 
and (2) the two-way-doppler phase error +az = & - e,, 
where e, is the phase of the transmitted carrier (assumed 
here to be zero). In the next section, the phase error + 
and its relationship to system parameters employing the 
linear PLL theory will be considered; in Section 111, 
the problem will be remodeled to permit consideration 
of the nonlinear effects of the PLL. Finally, the phase 
error when BPLs precede the vehicle- and reference- 
system PLLs will be studied in Section IV. 

II. Two-Way-Tracking Phase Error 
(Linear PLL Theory) 

In linearized form, the important features of the system 
in Fig. 4-1 are illustrated in Fig. 4-2. (In these figures, 
s denotes the Laplace transform variable.) The param- 
eter G is determined by the ratio of the output carrier 
frequency.‘The filter functions H,(s), where n = 1, 2, are 
the closed-loop transfer functions of the system’s carrier- 
tracking loops. The parameter n = 1 corresponds to e l e  
ments located in the vehicle subsystem, while n = 2 
corresponds to elements located in the reference system. 

To specify the mathematical form of H,(s), the form 
of the loop filters F,(s), where n = 1,2, in Fig. 4-1 must 
be specified. As indicated in Chapter 2, the loop filter 
that corresponds to the one generally employed for 
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UPLINK AND I DOWNLINK 
AND RECEWER I VEHICLE TRANSPONDER 

Fig. 4-2. linearized two-way-doppler and phase- 
measuring system 

carrier-tracking purposes is of the proportional-plus- 
integral control type, viz, 

and the corresponding H,(s) is determined from Eq. (2-6), 
viz., 

As before, it is convenient to define the quantity T, as 

(4-11) 

most useful form of H,(s), viz., 

Tn + 1 = 

n = 1,2 (4-14) 

From Eq. (4-10) one may derive the system-damping 
behavior. For T, < 4, the roots of the denominator poly- 
nomial lead to an underdamped system, with damping 
factor f and loop natural frequency nno given by 

(4-15) 

For r, = 4, critical damping (t, = 1) occurs and, for 
r, >> 4, Hn(s) has two real negative poles. 

and the loop bandwidth WLn as 

The reference receiver's tracking phase error +r2 is 
defined as the difference between the receiver output 
phase and the receiver input phase, 

W L n  = - n = 1,2 

(4-12) 

(4-16) 
Substituting Eq. (4-10) into Eq. (4-12) and carrying out 
the integration, we have 

We note that the noise that enters the vehicle trans- 
ponder must be congdered as part of the reference 
receiver's input signal &(s) + 8,. Thus, the Laplace trans- 
form of the phase error +&) is 

(4-13) 
1 + T* 

2% 
-- 1 + r,, 

W L n  = 
27zn (1 + ") rn r1n 

+&> = n,(s)GH,(s)[l - H2(s)I + n8(s)Hz(s) the latter approximation being valid when rnrIn >> rZn. 

Thus, the use of Eq. (4-13) in Eq. (4-10) leads to the (4-17) 
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and the mean-squared value of the reference receiver’s 
tracking phase error is 

+&) +T2( -s) ds (4-18) 

which becomes (using linear PLL theory) 

(4-19) 

Substituting Eq. (4-14) into Eq. (4-19) and integrating 
the result, we have 

(4-20) 
1 1 

.a1 a 2  
+ -  = - 

9 *z 

where 

and 

WLl (Tz + 1) 
= WL2 (TI  + 1) 

The function KE(rl, r2, p )  has been computed and the 
results are plotted in Fig. 4-3 for various values of r1 = 
r2 = T and 8. In this figure, p = WLJWL2, and no limiters 
are present in this system. It is evident from this figure 
that the parameters r17 r,, and 0 are significant in the 
design of two-way phase-measuring systems. 

A comparison of the performance of a linear system 
that makes a two-way phase measurement (i-e., the signal 

10-1 2 4 6  1 oo a 4 6 10’ 2 4 6  

p = WLl/WL2 

Fig. 4-3. The function K&,, rz, p )  vs 8 for various values of system damping 
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relayed to the reference system is derived from a free- 
running oscillator on board the vehicle) with a linear 
system that makes a one-way measurement would be 
helpful. In the linear system, the reference receiver's phase 
error becomes ain = 1. In a one-way linear system, this 
corresponds to the condition 

The ratio Pc2/P:z is the ratio of signal power in a two-way 
system to the signal power in a one-way system that 
produces a mean-square phase error of one radian: 

= 1  (4-21) The parameter 2PC,/WL,N1, is the signal-to-noise ratio 
in the bandwidth of the vehicle's carrier-tracking loop x, 
as plotted in Fig. 4-4 against the ratio PC2/P&. Various 
values of the parameter p wt,/wL, are used in the 
figure; the linear PLL theory is assumed, and no limiters 
are present in the system. 

2p',2 
0 2  - 
h - PI;, WL2 

and, because the noise in both cases is the same and the 
bandwidth of the reference receiver is WL2 = WL~,  
we have 

N,, = - 2p:2 (4-22) 
WL2 111. Two-Way-Tracking Phase Error 

(Nonlinear PLL Theory) 
which means 

Because the exact nonlinear PLL theory that pertains 
to the two-way phase measurement appears formidable, 
an approximate model for the probability distribution of 
the two-way phase error +T2 may be developed on the 
basis of the PLL measurements presented in Chapter 2. 

2PCl 
az - 

9n [ WL~N,, 

(4-23) 

Fig. 4-4. Degradation in ground receiver sensitivity Pc2/P E, vs the 
signal-to-noise ratio x in the vehicle's carrier-tracking loop 
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The validity of this model's predictions of the exact per- 
formance of a two-way phase-measuring system must be 
checked by results obtained in the laboratory. Unfortu- 
nately, these measurements for the two-way system have 
not been made at present; the approximate distribution 
of the phase error, however, can be checked at the 
extremes of high and low signal-to-noise ratios. 

2.4 

2.0 

1.6 - 
s" 
v 
n. 

1.2 

For the present, the system phase error is denoted by 
(prZ = +. Then, on the basis of the results in Chapter 2, 
Section 111, it is possible to show (Ref. 4-1) that the dis- 
tribution of the two-way phase error is approximated by 

- 

- 

- 

- 

(4-25) 

where I,(x) is the imaginary Bessel function of zero order 
and of argument x, and a1 and az are defined in Eq. (4-20). 
This model distribution is valid only if G is approximately 
equal to unity; in practice, this is the case of greatest 
interest. The validity of using this distribution as a model 
for the distribution of the two-way phase error may be 
checked by considering the limiting cases of high and 
low signal-to-noise ratios. For large signal-to-noise ratios 
in the uplink and downlink carrier-tracking loops, the 
distribution [Eq. (4-25)] is Gaussian with zero mean and 
a variance of ai1 + ai1 ; i.e., 

Thus, the distribution checks with the linear PLL theory 
for large signal-to-noise ratios. As ax1 and az approach 
infinity, 

which means that perfect phase measurement is obtained. 

For weak-signal conditions on either the uplink or the 
downlink, or both, Eq. (4-25) becomes uniformly dis- 
tributed; i.e., 

a = 100 1 
I I J I I  

a = a  = a  
1 2  

a 
9y md 

Fig. 4-5. Probability distribution p((P,) of the two-way 
phase error vs (Pz 

This is in direct agreement with one's intuition for weak- 
signal strengths. Plotted in Fig. 4-5 is Eq. (4-25) for various 
values of a, = az = a. 

The variance of this distribution is important in 
practice; i.e., 

Substitution of Eq. (4-25) into Eq. (4-29) leads to 

(4-29) 

(4-30) 

To illustrate, the general behavior of this variance 
[Eq. (4-30)] is plotted in Fig. 4-6 for various values of 
a1 = a, = a. For comparison purposes, results from the 
linear and nonlinear PLL theory of one-way links are 
shown (i.e,, n = 1); no limiters are present in the system 
illustrated. 
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Fig. 4-6. Variance of the two-way phase error o&In = 21 vs the 
noise-to-signal ratio 

IV. Two-Way-Tracking Phase Error Where the 
Carrier-Tracking loops Are Preceded by 
BPLs (Linear PLl Theory1 

In practice, and for the reasons given in Chapter 3, 
Section I, BPLs always precede the carrier-tracking loops. 
Figure 4-7 illustrates a typical mechanization of a prac- 
tical two-way phase-measuring system. 

Employing the linear PLL theory given in Chapter 3 
[i.e., substituting Eq. (3-16) into Eq. (4-19)], we can easily 
show that the variance of the two-way phase measure- 
ment is given by 

where 

(4-31) 

(4-32) 

and I?,, n = 1,2, are the limiter performance factors given 
by 

1 + 0 . 3 4 5 ~ ~ ~ ~  r -  
- 0.862 + 0.690 xnyn 

} (4-33) 

The parameters Wno, n = 1,2, are the bandwidths of the 
carrier-tracking loops at the "design point" [Eq. (3-13)], 
and W,, n = 1,2, is the bandwidth of the IF filter that 
precedes the carrier-tracking loops. Further, the param- 
eters rno and run are given by 

where ann are the limiter suppression factors given in 
Eqs. (3-4) and (3-5) with a slight change in notation to 
accommodate the two-way system model. Finally, G is the 
static phase gain of the vehicle receiver, and KE(k,, k,, p) 
is given by 

2k,p + 4p2 (1 + p) + p3 (1 + p)klk, + 2k2p4 1 kz, p) = - k: + 2k$ + 2p(k1 + k, - klk,) + 2p3k2 + kip4] (m) (4-35) 
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where and becomes, upon carrying out the integration, 

and 

WlO (9.20 + 1) 
= wzo (TlO + 1) 

Plotted in Fig. 4-8 is Eq. (4-35) vs Js for various values 
of the signal-to-noise ratio in the “design-point” loop 
bandwidths of the vehicle’s and ground receiver’s carrier- 
tracking loops; limiters are present in both receivers. 
Equation (4-31) is plotted in Fig. 4-9 against various 
values of the signal-to-noise ratio in the “design-point’’ 
loop bandwidths of the vehicle’s and ground receiver’s 
carrier-tracking loops. It may be shown that this plot is 
independent of y for the cases of greatest interest in 
practice. Linear PLL theory is assumed, and BPLs are 
present in the system. The performance of one-way 
phase-measuring links may be obtained from the above 
equations by allowing all to approach infinity. 

V. Two-Way-Tracking Phase Error Where the 
Carrier-Tracking loops Are Preceded by 
BPLs (Nonlinear PLL Theory) 

The distribution of the phase error +z may be modeled 
in a manner analogous to that employed in Section I11 of 
this chapter. Thus, when BPLs precede the carrier- 
tracking loops, the distribution of the phase error is well 
approximated by 

(4-36) 

where ale and aze are defined in Eq. (4-32). The variance 
of Eq. (4-36) is of interest in practice, i.e., 

(437) 

(4-38) 

Plotted in Fig. 4-10 is Eq. (4-38) for various system 
mechanizations. The variance shown in this figure exists 
in the “design-point” loop bandwidths of the vehicle’s 
and ground receiver’s carrier-tracking loops. It may be 
shown that this plot is independent of y for the cases of 
greatest interest in practice. Nonlinear PLL theory is 
assumed, and BPLs are present in the system. 

VI. Comparison of the Performance of One-way 
and Two-way Phase-Measuring Systems 
Where BPLs Are Present (Linear PLL Theory) 

Frequently in the design of two-way phase-measuring 
systems, comparison of the performance of a one-way 
system with a two-way system is desirable. For the pur- 
poses here, this comparison is predicated on the ratio of 
the variance of the two-way phase error to the variance 
of the one-way phase error. In the linear PLL theory 
that uses carrier-tracking loops preceded by BPLs, 

In Fig. 4-11 the function R,, is plotted against the 
signal-to-noise ratio in the ground receiver’s “design- 
point” loop bandwidth for various system mechaniza- 
tions. Results are given in this figure for various values 
of the signal-to-noise ratio x1 in the “design-point” loop 
bandwidth of the vehicle’s carrier-tracking loop, Linear 
PLL theory is assumed in Fig. 4-11, and BPLs are present 
in the system. Note that this comparison assumes that 
the frequency and phase of the downlink carrier in the 
one-way phase-measuring system is precisely known. In 
practice, this assumption is not valid; consequently, in- 
formation relative to the frequency and phase of the 
spacecraft oscillators must be telemetered back to the 
reference system with extreme accuracy. 
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Chapter 5 
Doppler Measurements in One-way and Two-way Phase- 

Coherent Communication Systems 

In deep-space communication systems, a major func- 
tion that must be performed with extreme accuracy is 
tracking. Tracking information consists of the vehicle’s 
velocity, range, and angular position. Velocity of the 
vehicle is usually based on an estimate of the received 
signal’s doppler shift in frequency. This doppler shift, 
which is proportional to the velocity of the vehicle along 
a line connecting the vehicle to the reference system, is 
sometimes referred to as the doppler velocity, range rate, 
or slant velocity; in this discussion, the parameter will be 
referred to as doppler. Doppler may be used to accurately 
specify the flight path or trajectory of the vehicle, and it 
is of fundamental importance in all uses of telemetry data. 

There are several techniques for measuring doppler; 
the one considered in this section is the measurement of 
a two-way doppler shift by transmitting a known signal 
to the vehicle and coherently transponding the observed 
signal back to the reference system. One-way-doppler 
measurement is made by transmitting a signal from a 
free-running oscillator on board the vehicle and estimat- 
ing the received doppler shift. One-way doppler is, of 
coqrse, inferior to two-way doppler because the fre- 
quency of the reference oscillator on board the vehicle 
must be known a priori at the reference system. In prac- 
tice, owing to drifts in the frequency source because of 
variations in the physical environment, the frequency 

radiated from the vehicle is not precisely known. Thus, 
to obtain accurate doppler measurements in a one-way- 
doppler system, separate telemetered information about 
the spacecraft or vehicle oscillators is required. Conse- 
quently, from a practical point of view, two-way doppler 
is more attractive than one-way doppler. 

A two-way-doppler measuring system determines the 
vehicle’s velocity from the two-way-doppler shift of 
the uplink carrier frequency. To measure this doppler 
shift, coherence of the uplink carrier frequency through 
the vehicle transponder and back to the ground or ref- 
erence receiver is necessary. This uplink carrier frequency 
is compared in frequency with a continuing sample of 
the uplink frequency in the velocity extraction unit. The 
velocity extraction unit measures doppler by counting, 
for a preset period, the number of cycles in the sum of 
the doppler shift and a known frequency offset or bias. 

This section will develop a theory upon which the per- 
formance of a two-way-doppler measuring system may 
be designed and evaluated. The theory presented includes 
the effects of BPLs in both the vehicle and the reference 
systems, and the effects of nonlinear behavior of the 
PLLs on system design. The linear PLL theory with and 
without BPLs preceding the PLLs is also considered. 
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1. Basic System Model 

Figure 4-1 describes the simplest mechanization of a 
two-way-doppler measuring system. The reference sys- 
tem emits, on the uplink, the waveform 

p ( t )  = m s i n o o t  

After transmission, the channel introduces an arbitrary 
and unknown phase shift e, in the transmitted waveform 
and further disturbs p ( t )  with additive wliite Gaussian 
noise nl(t) of the single-sided spectral density N,,  W/Hz. 
There occurs in the vehicle, then, the dopgler-shifted, 
phase-shifted, noise-corrupted waveform 

+(t) = sin (olt + e,) + nl(t) (5-2) 

The additive noise process n,(t) may be represented by 

nl(t) = x,(t)  COS (olt + e,) + yl(t) sin (@,t + 01) 

(5-3) 

where x,(t) and yl(t) are statistfcally independent, sta- 
tionary white Gaussian noise processes of single-sided 
spectral density N, ,  W/Hz. The vehicle coherently tracks, 
by means of a narrowband PLL, the carrier component, 
and produces the estimate 

z(t) = ficos ( w d  + 
where 8, is the PLL estimate of e,. 

The carrier for the downlink in 

&) (5-4) 

a two-way-doppler 
measuring system is derived from the vehicle’s carrier- 
tracking loop. Thus, on the downlink, we transmit 

(5-5) 

and observe, at the reference system, the doppler-shifted, 
phase-shifted, noise-corrupted waveform 

t(t) = K s i n ( w , t  + & + 6,) + nz(t) (5-6) 

where %(t) is stationary white Gaussian noise of the 
single-sided spectral density N,,  W/Hz, and ol0 = Go,. 
Here G denotes the static phase gain of the vehicle trans- 
ponder. A convenient representation for n,(t) is given by 

nz(t> = xz(t )  cos (ozt + R + e,> + y2(t) sin ( w z t  + & + ez) 

(5-7) 

where x2(t )  and yz(t) are statistically independent and 
white Gaussian noise processes. The reference receiver 
tracks the carrier component in [(t), which provides the 
receiver with the estimate 

(5-8) u(t) = flcos (ozt + k)  

The quantity f is the PLL estimate of $ + e,. 

In the design of such a system, the mean-squared value 
of the two-way-doppler error +d2 is a significant param- 
eter: 

- 
= = (Pi2 (5-9) 

where the bar denotes the mathematical expectation, and 
6, is the phase of the transmitted carrier (assumed to be 
zero). In Section I1 of this chapter, the doppler error +dz 

and its relationship to the various system parameters are 
considered. The investigation begins by using the linear 
PLL theory; in a later part of this chapter, the problem 
is remodeled to permit study of nonlinear PLL effects. 
Finally, the doppler error where BPLs precede the ve- 
hicle’s reference system carrier-tracking loop is considered. 

11. Two-Way-Doppler Error (Linear PLL Theory1 

In linearized form, the important features of the 
system of Fig. 4-1 are depicted in Fig. 4-2. (In Figs. 4-1 
and 4-2, s denotes the Laplace transform variable.) The 
parameter G is the static phase gain of the vehicle trans- 
ponder; this gain is determined by the ratio of the output 
carrier frequency to the input carrier frequency. The 
filter functions H,(s), where n = 1,2, are the closed-loop 
transfer functions of the system’s carrier-tracking loops. 
The form of the filters is described in detail in Eqs. (2-13) 
and (4-14). 

The two-way-doppler phase error +dz is defined by the 
difference between the reference-receiver output phase 
8, and the original phase of the transmitter carrier 6, = 0. 
Thus, the spectral density of the doppler error due to 
noise alone at the reference receiver output is (in the 
Laplace transform notation) 

(5-10) 
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and the mean-squared value of the doppler error is 

Substituting Eq. (4-14) into Eq. (5-11) and carrying out the integration (Ref. 5-1), we have 

where 

and 

(5-11) 

(5-12) 

(5-13) 

The function KD(r1, T,, p) has been computed for a system 
without BPLs, and the results are plotted in Fig. 5-1 for 
the various values of system damping r1 = r2 = r and p. 
It is evident from Fig. 5-1 that the parameters rl, r,, and 
p are important ones to consider in the design of two- 
way-doppler measuring systems. 

which becomes 

N1oWL1 X G2KD(r1, r,, p) Qzi  = 1 + (5-15) 
2PCl 

This comparison is made in Fig. 5-2 for various system 
mechanizations; the linear PLL theory is assumed in the 

Before the nonlinear behavior of the doppler-measuring 
system is characterized, the performance of a system that 
makes a two-way-doppler measurement should be com- 
pared with the performance of a system that makes a 
one-way-doppler measurement. The ratio of the mean- 
squared value of the two-way-doppler phase error to the 
mean-squared value of the one-way-doppler phase error 
is given by 

1 1  
I S 2  - + -  

d2 = 1 + d, (5-14) @dz - dl Q ---- 
1 di 21 - - U2 

$di 
dz 

figure, and no BPLs are present in the system. 

111. Two-Way-Doppler Error (Nonlinear PLL 
Theory) 

The exact nonlinear PLL theory that pertains to the 
two-way-doppler measurement appears formidable; how- 
ever, an approximate model for the probability distribu- 
tion of the two-way-doppler error (Pd2 = +d may be 
developed on the basis of the nonlinear theory of PLLs 
and the measurements presented in Chapter 2. The accu- 
racy with which the model predicts the performance of 
the doppler-measuring system of Fig. 4-1 is determined 
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Fig. 5-2. Comparison of  the performance of one-way- Bnd two-way-doppler 
measuring systems for various values of /3 = WL1/WLz 
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by results obtained in the laboratory. Unfortunately, these 
results are not available at present; however, the distri- 
bution (to be given below) of the doppler-error checks 
at the extremes of high and low signal-to-noise ratios has 
been verified, which leaves suspect only the region 
between. 

On the basis of the results in Chapter 2, the distribu- 
tion of the two-way-doppler error can be approximated 
by (Ref. 5-2) 

. , . ,  
(5.16) 

where I,(x) is the imaginary Bessel function of zero order 
and of argument x, and d ,  and d ,  are defined in Eq. (5-12). 
This model distribution is valid only if G is approximately 
equal to unity, which is the case of greatest practical 
interest. The validity of this distribution as a model for the 
two-way-doppler error may be checked using the limiting 
cases of high and low signal-to-noise ratios. For large 
signal-to-noise ratios in the uplink and downlink carrier- 
tracking loops, the distribution Eq. (5-16) becomes Gaus- 
sian with zero mean and a variance of d;‘ + dil. Thus, 
for large signal-to-noise ratios, the distribution checks 
with the linear PLL theory in Section 4-11. 

For weak signal conditions on either the uplink or the 
downlink, or both, Eq. (5-16) becomes uniformly dis- 
tributed: 

(5-17) 

This agrees with what might be expected for weak signal 
conditions, and therefore the model for doppler-error 
distribution checks at the end points. Between these points, 
the validity of using p ( + d )  as the distribution of doppler 
error must be checked through laboratory measurement. 

The variance of this distribution is important in practice: 

Substitution of Eq. (5-16) into Eq. (5-18) leads to the result 

Equation (5-19) is plotted in Fig. 4-6 for various values of 
dl = d,. For comparison purposes, results from the linear 
and nonlinear theory of one-way links are illustrated in 
Fig. 4-6 (i.e., n = 1). 

IV. Two-Way-Doppler Error Where the Carrier- 
Tracking loops Are Preceded by BPLs 
(Linear PLl Theory) 

In practice, and for the reasons given in Section 3-1, 
BPLs always precede the carrier-tracking loops. Figure 4-7 
illustrates a typical mechanization of a practical two-way- 
doppler measuring system. 

Employing the linear PLL theory given in Chapter 3 
and Eq. (5-11), we see that the variance of the two-way- 
doppler error is 

(5-20) 

where 

and I?,, n = 1,2, are the limiter performance factors given 
by Eq. (4-33). The parameters Wno, n = 1,2, gre the band- 
widths of the carrier-tracking loops at the “design point” 
[Eq. (3-13)], and VVn, n = 1,2, is the bandwidth of the 
IF filter that precedes the PLL. Further, the parameters 
rno and b, n = 1,2, are defined in Eq. (4-34). The function 
&(k17 k,, p) is given by 

1 ki(2 + ki) + 2(k1+ k2 + 2)(p + p2) + kz(2 + k2)ps 
KD(k17 kz’ = & I] ki + 2k1p + 2(k1 + k2 - klk,)p2 + 2k2ps + kip4 (5-22) 
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where bandwidth of the vehicle’s and ground receiver’s carrier- 
tracking loops. The performance of a one-way-doppler 
measuring system may be obtained from Eqs. (5-20) and 
(5-21) by letting dl approach infinity. 

k=% 

= w,, (TI0 + 1) 

Tm0 
and 

Wlo (Tzo 3. 1) 

Plotted in Fig. 5-4 is Eq. (5-20) for various system 
mechanizations; for other values of y of interest in prac- 
tice, the results are, for practical purposes, the same. 

Plotted in Fig. 5-3 is Eq. (5-22) vs /3 for various values 
of the signal-to-noise ratios in the “design-point” loop 

I . 5 h  I I I I I I 1 I I I 
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Fig. 5-4. Variance of the two-way-doppler error U& vs the signal-to-noise ratios existing in the “design-point” 
loop bandwidth of the vehicle and ground receiver’s carrier-tracking loops (linear PLL theory) 
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Linear PLL theory is assumed in the figure, and BPLs 
are present in the system. The resultant behavior may 
be attributed to the increase in the ground receiver’s loop 
bandwidth as the signal-to-noise ratio on the downlink 
increases. 

V. Two-Way-Doppler Error Where the Carrier- 
Tracking Loops Are Preceded by BPLs 
(Nonlinear PLL Theory) 

The distribution of the doppler error +d may be modeled 
in a manner analogous to that employed in Section 4-111. 
Thus, when bandpass limiters precede the carrier-tracking 
loops, distribution of the phase error is well approximated 
by (Refs. 5-1 and 5-2) 

(5-23) 

where dlL and dzn are defined in Eq. (5-21). The variance 
of Eq. (5-23) is 

(5-24) 

Substitution of Eq. (523) in Eq. (5-24) leads to the 
expression 

Plotted in Fig. 5-5 is Eq. (5-25) for various system mecha- 
nizations; the conditions of this figure are those of Fig. 5-4, 
except that the nonlinear PLL theory is assumed. The 
behavior of the doppler variance as a function of the 
signal-to-noise ratio in the “design-point” loop bandwidth 
xz may be attributed again to increase in the bandwidth of 
the ground receiver’s carrier-tracking loop as the down- 
link signal-to-noise ratio increases. 

VI. Comparison of the Performance of One-Way- 
and Two-Way-Doppler Systems Where BPLs 
Are Present (Linear PLL Theory) 

This comparison is predicated on the basis of the ratio 
of the variance of the two-way-doppler error to the vari- 
ance of the one-way-doppler error. Using the linear PLL 
theory with the carrier-tracking loop preceded by BPLs, 
we have 

(5-26) 

The function D,, vs the signal-to-noise ratio in the “design- 
point” loop bandwidth of the ground receiver for various 
system mechanizations is illustrated in Fig. 5-6. The results 
are plotted for various values of the signal-to-noise ratio x 
that exist in the “design-point” loop bandwidth of the 
vehicle’s carrier-tracking loop. Linear PLL theory is 
assumed in Fig. 5-6, and BPLs are present in the system. 
Note that this comparison assumes precise knowledge of 
the frequency and phase of the downlink carrier in the 
one-way-doppler measuring system. If the phase and 
frequency are not known, separate information about the 
frequency of the spacecraft oscillators must be telem- 
etered back to earth with extreme accuracy to allow the 
comparison to be made. 
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Fig. 5-5. Variance of the two-way-doppler error d2 vs the signal-to-noise ratios existing in the “design-point” 
loop bandwidth of the vehicle and ground receiver’s carrier-trading loops (nonlinear PLL theory) 
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Chapter 6 
Downlink Carrier-Suppression Effects Due to Additive Noise on the 

Uplink in Two-way Phase-Coherent Carrier-Tracking Systems 

The second-moment theory of random processes will 
be used to determine the effects produced on the down- 
link carrier by the random modulation that exists on the 
vehicle’s VCO output. This random modulation, e,(t), 
reduces the power remaining in the downlink carrier 
component below that value obtained if the system trans- 
mitted a clean carrier back to the reference system. In 
practice, this suppression of the downlink carrier, which 
may be measured near the end of a mission, is important 
in the design of a two-way link. 

1. Carrier Suppression (Linear PLL Theory) 

tem is 
The waveform transmitted back to the reference sys- 

where wl0 = Go,, o1 is the received carrier frequency 
from the uplink, G the static phase gain in the vehicle 
system, and e&) the random phase modulation due to 
the additive noise on the uplink. The model that follows 
is valid only if G is approximately equal to unity, which 
is the case of greatest practical interest. If the linear PLL 

theory is used, the stationary process &(t) is well approxi- 
mated by a normal or Gaussian process with zero mean 
and a variance uzi = NloWL1G2/2Pc1. If we denote the 
covariance function of the phase modulation &(t) by 
Ke1(7) with Ke,(O) = 1, it may be shown (p. 605 of Ref. 6-1) 
that the covariance function K,(T) of v(t) is given by 

At T = 0, Kq(0) = P,,, i.e., as expected, the mean total 
power is P,, inasmuch as the modulation is entirely in 
the phase term. The intensity of the downlink carrier 
component is 

I ,  = &( co) = P,, exp (6-3) 

and that of the continuum becomes 

(6-4) 
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For phase modulation, when the process remains Gaus- 
sian, it is clear that I, > 0 so that there is always a dis- 
crete carrier component, although it may represent a 
trivial fraction of the total power P,, if uel is large. 

The carrier-suppression factor 2 is defhed as the ratio 
of the power remaining in the carrier component when 
the uplink additive noise affects the downlink transmis- 
sion, to the power remaining in the carrier component 
when the downlink carrier is derived in the vehicle from 
a free-running oscillator. Thus, from Eq. (104) we have 

Plotted in Fig. 6-1 is the carrier-suppression factor vs 

The parameter 

is the signal-to-noise ratio in the vehicle's carrier-tracking 
loop. 

II. Carrier Suppressiort (Nonlinear PLL Theory) 

If the phase modulation process is not Gaussian, the 
covariance function &(T) is not mathematically tractable; 
however, the carrier-suppression factor may still be com- 
puted. From Chapter 2, Section 111, the distribution of 
the phase estimate & is well approximated by 

where ~ 2 , ~  is given by 

The term ~ 2 8 ~  is the variance as determined from the 
linear PLL theory. 

The waveform ~ ( t )  may be written as 

+) = vWc, cos o1 cos wlot + -@jC2 sin e, sin wlot 

(6-8) 

and the intensity of the carrier component becomes 
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Fig. 6-1. Carrier suppression Pvs the parameter x1/G2; linear and nonlinear 
PLL theories are assumed and no BPLs are present 
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and, using Eq. (6-6), we reduce I ,  to 

The corresponding carrier suppression is given by 

(6-11) 

where Ik(x) is the imaginary$essel function of order k 
and argument x. The factor S is plotted in Fig. 6-1 for 
comparison with that obtained using the linear PLL 
theory. Note that as a;: approaches zero, the downlink 
carrier component is completely suppressed in the vehicle. 

Il l .  Carrier Suppression (Linear PLL Theory 
With BPLs Preceding the Loop) 

Here we assume that the bandwidth of the vehicle’s 
carrier-tracking loop is small enough for the process e&) 
to be Gaussian (i.e., the linear theory may be used). Thus, 
the variance of the process e&) adequately characterizes 
the carrier suppression. 

From Chapter 3, Section I, the variance of e,, if we 
assume that el = 0 without loss of generalityy becomes 

and rl and pl are defined in Eqs. (3-9) and (3-171, respec- 
tively. Thus, the downlink carrier suppression is given by 

N s = exp (-a:) (6-13) 

where is defined in Eq. (6-12). In Fig. 6-2, this sup- 
pression is plotted against 2P,l/N,oW,oG2 for various 
system mechanizations. In this figure, the parameter 
x1 = 2P,,/N1,W1, is the signal-to-noise ratio that exists 
in the “design-point” loop bandwidth. 

IV. Carrier Suppression (Nonlinear PLL Theory 
With PBLs Preceding the Loop) 

In this case, the covariance K,(T) cannot be determined 
mathematically; however, on the basis of the results in 
Section 11 of this chapter and Eqs. (3-19) and (3-20), 

.u s = [-I2 
(6-14) 
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Fig. 6-2. Carrier suppression J v s  the parameter x1/G2; linear PLL theory i s  
assumed and BPLs are present 
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where 

and r1 and p1 are defined in Eqs. (3-9) and (3-17), respec- 
tively. As before, we note that the downlink carrier is 

completely suppressed v;hen the uplink signal-to-noise 
ratio approaches zero. This result further supports the uni- 
form distribution of p(&) of Eq. (4-25) as a, approaches 
zero, and, further, supports the analytical model in this 
signal-to-noise ratio region. Plotted in Fig. 6-3 is Eq. (6-14) 
vs xJG2 = 2P,,/NloWLlG2 for various system mechani- 
zations. In this figure, the parameter x1 = 2Pcl/NloWlo is 
the signal-to-noise ratio existing in the "design-point" loop 
bandwidth. 
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Fig. 6-3. Carrier suppression S vs the parameter x1/G2; nonlinear PLL theory 

i s  assumed and BPLs are present 
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Chapter 7 

Diversity Combining to Improve Radio-Frequency Phase and 
Doppler Measurements in One-way and Two-way 

Coherent Communication Systems 

1. Introduction space communications, the transmission medium can be 
tapped for an ever-available supply of diversified copies Diversity is defined here as a general technique that by employing more than one receiving antenna. If phys- utilizes two or more copies of a signal with varying ically separated by several wavelengths, the observed degrees of disturbance to obtain, by a selection or com- signal copies will be statistically independent. Hence, the bination scheme, a larger signal-to-noise ratio than is improvements due to diversity reception are realized. obtainable from either of the copies separately. Although If, in fact, the copies are not statistically independent, diversity is commonly understood to be aimed at im- the gain obtained is due only to an increase in antenna proving the reliability of reception of signals that are area. subject to fading in the presence of random noise, the 

significance of the term will be extended here to cover 
conceptually related techniques. In particular, these tech- 
niques are intended to reduce the effective phase and 
doppler error occurring in deep-space communication 
systems. 

The second problem in diversity is how to utilize the 
available disturbed copies of the signal to achieve 
the least possible loss of information in extracting the 
desired message or signal parameter. The technique of 
particular interest here is RF combining, i.e., coherently 
summing the observed copies at the observed frequen- 
cies. In practice, this is a difficult feat; however, in what 
follows we will assume that this can be accomplished 
with perfect precision. 

The first problem in diversity reception is the procure- 
ment of the “diverse” copies of the disturbed signal, or, 
if only one copy is available, the operation on this copy 
necessary to generate additional “diversified copies. In 
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II .  Improvements Realized in RF Phase 
Measurements With Use of 
Diversity Techniques 

Denote the output of the Lth antenna (1 = 1,2, -.., L) 
by 

where w21 is the radian frequency of the carrier com- 
ponent, 8,, is the phase jitter on the downlink carrier due 
to the additive noise on the uplink, e,, is the phase shift 
on the downlink, and nzl(t) is white Gaussian noise of 
single-sided spectral density N,, W/Hz. Thus, the ob- 
served waveform appearing at the output of the RF 
combination is given by 

L = l  

which becomes, when we use Eq. (7-1) and the facts 
that 8, = &, t?2L = 8,, and oZL = w2 for all values of 
L = 1,2, * * e ,  L, 

t(t) = y m 2  sin [wzt + e", + e21 + %L(t) (7-2) 

where nzL(t) is white Gaussian noise of single-sided spec- 
tral density LN,, W/Hz. Thus, RF combining has in- 
creased the signal power by a factor of L2 watts while 
the noise power per unit bandwidth is increased by the 
factor L watts. 

We may determine the variance of the two-way 
tracking phase error using the theory and results given 
in Chapter 4, i.e., 

where 

(7-3) 

(7-4) 

and KR(rl,r2,@) is defined in Eq. (4-20). Further, the 
statistics of the two-way-tracking phase-error distribution 
are well approximated if we use Eq. (4-25) and the a1 
and a, as defined in Eq. (7-4). 

Where BPLs precede the carrier-tracking loops, the 
variance of the phase error, as determined from the linear 
PLL theory, is given by 

where 

(7-5) 

and rl and KR(k,, k,, g) are defined in Eqs. (4-33) and 
(4-35) respectively. The factor r2 is given by 

1 + 0.345Lxzy2 
0.862 + 0.690Lx,y2 r, = (7-7) 

where x2 and yz are defined in Eq. (4-33). On the other 
hand, the model of the phase-error distribution, employ- 
ing the nonlinear PLL theory with BPLs preceding the 
carrier-tracking loops and with L-fold diversity, is well 
approximated by Eq. (4-36) with all and%L given in 
Eq. (7-6). Thus, the design of an L-fold, RF combining, 
diversity phase-measuring system may proceed on the 
basis of the formulas given in this section. 

111. Improvements Realized in One-way- and 
Two- Way-Doppler Measurements W i'th 
Use of Diversity Techniques 

Using the linear PLL theory of Chapter 5, we can 
easily show the variance of the two-way-doppler error 
to be 

where 

(7-9) 

and KD(r1, r2, 8) is defined in Eq. (5-13). The statistics 
of the two-way-doppler error are determined from 
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Eq. (5-16) where d, and d2 are given in Eq. (7-8), i.e., 

(7-10) 

This, of course, is a result -of the nonlinear PLL theory. 

When BPLs precede the carrier-tracking loops, the 
variance of the two-way-doppler is given by 

where 

(7-11) 

This is easily determined if we use the linear PLL theory 
given in Chapter 3 and the results from Chapter 5. The 
functions rl, and KB(kl, k,, p )  are defined in Eqs. (4-33) 
and (5-22), respectively, and I?, is defined by Eq. (7-7). 
Finally, for L-fold diversity, the statistics of the two-way- 

doppler error are well approximated by Eq. (5-23) if we 
use Eq. (7-12) to specify dIg and dZg. This distribution 
is, of course, a model two-way-doppler error when BPLs 
precede the carrier-tracking loops and the nonlinearities 
of the PLLs are considered. Thus, the design of an 
L-fold, RF combining, doppler measuring system may 
proceed on the basis of the formulas given in this section. 

IV. Conclusions 

The reliability of a communication system employing 
antenna diversity to measure the RF phase-error and 
doppler shift is basically determined by the properties 
of the signal at the receiving site and by the operating 
condition of the combining equipment. Accordingly, we 
have concentrated in the present chapter on the effect 
of diversity upon signal reIiability, and have ignored the 
equally important topic of equipment reliability. In any 
case, the design of an L-fold, RF combining, diversity 
system may proceed on the basis of the linear or non- 
linear PLL theory developed in this chapter and, by 
replacing P,, with LP,,, the curves given in Chapters 4 
and 5. If BPLs are used, as is the case in practice, the 
design then must be predicated upon the development 
given in this chapter. The reason, of course, that the 
curves in Chapters 4 and 5 do not apply in this case is 
that the limiter performance factor Fz depends upon L, 
and this fact has not been taken into consideration in 
Chapters 3 and 4 (i.e., L = 1). The results derived in this 
chapter assume a common gain among the L antennas. 
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Nomenclature 

d, 

K 

P 

P ( + d  

P 

Pcn 

Pn 
T 

doppler variable characterizing the distri- 
bution p(+d) in a one-way system 
doppler variable characterizing the distri- 
bution p ( 4 d )  in a two-way system 
linear loop-filter transfer function 
static phase gain of the vehicle’s carrier- 
tracking loop 
closed loop transfer function of the linear- 
ized second-order loop 
intensity of the downlink carrier component, 
W 

imaginary Bessel function of order k and 
argument x 
imaginary Bessel function of order zero and 
argument x 
KiK,Kvco, equivalent simple-loop gain, v-1 s-l 

diversity order 
doppler coefficient 
rms VCO signal output 
mixer gain, V-l 
VCO gain constant, rad/s-V 
diversity order 

refers to uplink parameters 

refers to downlink parameters 

single-sided noise spectral density, W/Hz 

single-sided spectral density of the additive 
noise (n  = 1 or 2), W/Hz 

Heaviside operator, d/dt 
probability density function of the doppler 
error 

probability distribution of the two-way 
phase error 

signal power into loop, W 

power remaining in the carrier component 
( n = l o r 2 ) , W  

total radiated power (n = 1 or 2), W 
second-order loop parameter ratio equal to 
K r ; f l / ~ ~  without a BPL, and equal to 
aeK~2, / r ,  with a BPL 

rno 
S - 
S 

W !  

Wi 

WL 

WL, 

WLO 

Wno 

X 

Xn 

Y 

a 

ae 

a t 0  

P 
r 
t 

second-order loop natural frequency, Hz 
Laplace transform variable 

total average number of phase jumps per 
unit of time 

carrier suppression factor 

spectral density of noise at limiter output, 
W/HZ 

noise bandwidth of the limiter output spec- 
trum, Hz 

single-sided bandwidth of the IF filter, Hz 
dynamic double-sided linear loop band- 
width (WL = 2BL),  Hz 

dynamic double-sided bandwidth of the 
carrier-tracking loop, Hz 

double-sided loop bandwidth at “design 
point” or loop threshold (WL0 = 2BL0), Hz 

double-sided bandwidth of the carrier- 
tracking filter (n = 1 or 2), Hz 

signal-to-noise ratio in bandwidth of the 

signal-to-noise ratio existing in the carrier- 
tracking-loop bandwidth, Wcn/NmWno or 

ratio of loop bandwidth to IF-filter band- 
width, WL/Wi 

loop signal-to-noise ratio in WL 

limiter signal-voltage suppression factor 

limiter signal-voltage suppression factor at 
system “design point”, or value of aL at 
threshold 
ratio of loop bandwidths 

limiter suppression factor, apo /ae  

linear loop damping factor 

XY 

input signal-to-noise ratio of the limiter, 
2P/NoWj 

arbitrary phase shift of Lth diversity path 
limiter suppression factor, ato/ae 

variance of loop phase error, linear PLL 
theory 

loop, 2P/No WL 

Pcn/NnoBno 
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Nomenclature ( conid 1 

mean-squared value of one-way doppler 
error 

u& mean-squared value of two-way doppler 
error 

u$ variance of loop phase error, rad2 
u variance of the one-way phase-measurement 

error 
variance of the two-way phase-measurement 
error 
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T~ second-order loop denominator time con- 
stant of F(s), s 

second-order loop numerator time constant 
of F(s), s 

phase error in loop, rad 
phase error in the one-way system, rad 

(p2 phase error in the two-way system, rad 

o0 quiescent frequency of the VCO, rad/s 

T~ 

+(t) 
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